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FOREWORD

This report, "Numerical Flow Field Program for Aerodynamic Heating Analysis,"
describes the computer program that provides economical and accurate predictions
of heat transfer to three-dimensional configurations. The report consists of the
following two volumes:

® Volume I, Equations and Results
® Volume II, User's Manual

i . The work was performed by the McDonnell Douglas Astronautics Company -

> | : St. Louis Division (MDAC-St. Louis), under contract number F33615-77-C-3003 to the
f Air Force Flight Dynamics Laboratory, Air Force Systems Command, Wright-Patterson
- ' Air Force Base, Ohio. The subject contract was initiated in June 1977 and com-
pleted in September 1979. Mr. Arthur B. Lewis was the Air Force Project Engineer.
Mr. H. W. Kipp was the Program Manager for MDAC-St. Louis and Mr. H. J. Fivel

was the principal investigator.
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The author gratefully acknowledges the major contributions of Dr. Fred R.
Dedarnette of North Carolina State University to the development of the computer
= program and for his assistance in preparing several sections of this report. The
: author wishes to also thank Mr. N. J. Sliski, AFFDL, and Mr. W. H. Plath, MDAC,
for their contributions to both the analyses and report write-up.

Requests for copies of the computer program and/or this report should be
directed to the Air Force Flight Dynamics Laboratory (FXG).
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This report supersedes)AFFDL-TR-79- 3025{ Interim Report for June 1977 -
December 1978, "Numerical Fiow Field Program for Aerodynamic Heating Analysis," by
; H. J. Fivel, April 1979.
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a curve fit constant for modified Dahlem-Buck cone pressure,
defined by Equation (13)

a separation location correlation parameter. See Figures 29, 31
and 32.
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See Figure 27.

A constant in flat bottom delta wing spanwise pressure distribution
equation

b separation location correlation parameter. See Figures 29, 31
and 32.

b function in the oblique shockwave relation, Equation (20)

B constant in flat bottom delta wing spanwise pressure distribution
equation

c function in the oblique shockwave relation, Equation (20)

C constant in flat bottom delta wing spanwise pressure distribution
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C constant in the peak to shock heat transfer distribution equation,
defined in Equation (62)

Cf skin friction coefficient

'Ef incompressibie skin friction coefficient

CP pressure coefficient

Cp specific heat ratio at constant pressure

CSt constant in the shear layer relation, Equation (50), for
Stanton number

d function in the oblique shockwave relation, Equation (20)
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LIST OF SYMBOLS (Continued)

body radius

%ga?sformation function for skin friction, defined by Equation
8

transformation function for momentum thickness Reynolds number,
defined by Equation (36)

streamline metric

independent variable for velocity expansion expression in tangent-
cone pressure solution, defined by Equation (22)

enthalpy
heat transfer coefficient

difference between the conical ray angle and the cone half
angle

streamline metric in s-direction

compressible form factor (H. = 8*/6)

mechanical equivalent

constant in the two-dimensional separation correlation. See
Equation (44).

length of separated region in a two-dimensional interaction

length from separation point to hinge line in a two-dimensional
interaction

length along flap from hinge line to reattachment point

distance between two adjacent streamlines for calculating stream-
line metric. See Figure 1.

Mach number

exponent in curve fit for modified Dahlem-Buck cone pressure,
defined by Equation (14)

?xpgnent in heat transfer distribution relation given by Equation
61

exponent in peak pressure - shock angle correlation given by
Equation (56)
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1 Net exponent in straight-line correlation of data in Figure 26.
See Equation (50).
N exponent in expression modifying Newtonian pressure distribution,
defined in Equation (6)
P pressure
7? PASYMPT asymptotic value of windward centerline pressure on delta wing
- flat bottom
jﬁF PE peak pressure on the leading edge of a flat bottom delta wing.
= See Figure 5.
& Pe pressure at the spanwise location where the pressure approaches
3 the centerline value. See Figure 5.
;; PM pressure at the match point between the modified Newtonian
E pressure distribution on the leading edge and the flat bottom
: delta wing pressure. See Figure 5.
f Pq Tocal pressure at match point for Prandtl-Meyer solution
| Pr Prandt1l Number
1 P SHOULDER pressure at the shoulder g
; ' (Pl)i undisturbed pressure at hinge line of compression flap
} (Pz)i pressure at incipient separation
3 | q heating rate :
\ q, free stream dynamic pressure é
Q local to free stream static pressure ratio, defined by Equation
| (15)
3 J Q local heating rate
| QM minimum shoulder to centerline pressure ratio {
QMM minimum shoulder to centerline pressure ratio at zero degrees ‘
angle of attack
| QS heating rate at stagnation point 1
Qw local heating rate
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LIST OF SYMBOLS (Continued)

QNS heating rate at stagnation point
r recovery factor
3 Re Reynolds number
7 ReS undisturbed Reynolds number based on distance along a stream-
’ line from the stagnation point to the hinge line
o Re Reynolds number based on shear layer thickness. See Equation
28 SHEAR (47).
5 Reg boundary layer thickness Reynolds number based on undisturbed
conditions at hinge line of compression flap
| Rey momentum thickness Reynolds number
i ﬁéo transformed (incompressible) momentum thickness Reynolds number
RN nose radius
i-{ ROG ogive radius, see Figure 47
| S0 distance along delta wing surface normal to leading edge from
: m:dline of wing
3 S factor to match McElderry flat bottom centerline pressure distri-
' buti-n with nose cap pressure, see Equation (29)
{ ) distaice along streamline, measured from stagnation point
i
St Stanton number
= t delta wing model thickness l
= T constant in McElderry centerline pressure distribution, defined 5
2 by Equation {30) :
4 1 T temperature
u velocity
Wf weighting factor in Equation (2), O for laminar flow and 1 for
turbulent flow
: X Cartesian coordinate in axial direction
1 X distance measured from fin leading edge. See Figure 27.
; xiii 3
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LIST OF SYMBOLS (Continued)

axial location, in nose diameters (measured from the vertex),
where the ratio of shoulder pressure to centerline pressure
becomes constant

distance along a streamline from the separation point to the
hinge line

axial distance from the hinge 1ine to the reattachment point

distance along a streamline from the stagnation point to the
separation point

distance measured along fin. See Figure 27.

distance measured along shockwave. See Figure 27.

Cartesian coordinate, normal to x

distance outboard of shock

distance measured normal to shockwave. See Figure 27.

the coordinates of the four points used to define the conic
equation in a particular cross sectional plane. See Figures 38
and 39.

Axes of the local coordinate system used to describe a conic
section in a cross-sectional plane. See Section 3.2.1 for
details.

Cartesian coordinate, normal to x

angle of attack

coordinate normal to streamline on body surface

angular difference between primary and secondary streamlines.
See Figure 1.

body angle, defined in geometry output Section 3.2.3, Volume
I1

shock wave angle

ratio of specific heats

impact angle of freestream to local body surface
boundary layer thickness

value of the cone half angle where the cone pressure matches
the modified Dahlem-Buck pressure
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LIST OF SYMBOLS (Continued)

body angle, defined in geometry output Section 3.2.3, Volume
11

displacement thickness

conical ray angle

inclination angle of surface inviscid streamline
incidence angle of body

deflection angle of the dividing streamline. See Figure
19.

wedge angle for incipient separation

effective fin deflection angle measured with respect to the
local freestream direction

momentum thickness
shock angle
viscosity

Prandtl-Meyer angle of expansion from sonic flow to the match
point, defined by Equation (18)

coordinate along a streamline

pressure ratio across an oblique shock. See Equation (39).
density

circumferential angle, see Figure 37

orientation angle between two streamlines. See Figure 1.

angular Tocation of the peak pressure on the leading edge of a
flat bottom delta wing. See Figure 5.

angular Tocation of the place where the pressure approaches the
centerline value. See Figure 5.

angular location of the matchpoint between the modified Newtonian
pressure on the leading edge and the flat bottom delta wing pressure.
See Figure 5.

angular location of the shoulder of the flat bottom delta wing
pressure distribution. See Figure 5.
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Subscripts

aw
CL
CONE
DB

FLAP
FIN

MDB
PK
PLAT

REF

SEP

SH
SHEAR

LIST OF SYMBOLS (Continued)

complement of the impact angle, &, used in the Newtonian pressure
routine

Y-coordinate measured from the shock normal to the fin. See Figure
28.

mass flux absorbed by the boundary layer, defined by Equation (2)
location of peak heating with respect to the fin

mass flux crossing the bow shock wave, defined by Equation (3)

adiabatic wall

windward centerline

value on a cone surface

Dahlem-Buck

boundary layer edge

value on or with respect to a flap

value on or with respect to a fin
conditions at incipient separation
modified Dahlem-Buck

peak value

value on or with respect tq‘piateau region
Prandt1-Meyer match point

laminar flow

reference value

stagnation

value in or with respect to plateau region
value at or with respect to shockwave

value based on shear layer thickness

xvi
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u undisturbed value
24
k- w wall
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v?' Superscript
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SECTION I
INTRODUCTION

Design of high speed vehicles requires a fast, reliable method for the
prediction of heat loads to all parts of a vehicle over an entire flight tra-
jectory. The extensive application of complex automated procedures is often
prohibitive in terms of both time and computer costs. The fundamental purpose of
the Numerical Flow Field Program for Aerodynamic Heating Analysis is to provide an
economical, easy-to-use engineering analysis tool for computation of aerodynamic
heating to a wide variety of both simple and complex high speed vehicle configura-
tions. Complex configurations include vehicles having features which produce
strong shocks, such as flaps and fins. Of specific interest are configurations
having flat or nearly flat surfaces and regions in which streamlines converge.

The current-generation flow field computer program developed by Dedarnette
(Reference 1) does provide accurate predictions of heat transfer to simplified
geometries. This document reports on modifications to the DeJarnette code which
increase the options available to the user in the areas of surface pressure
determination, turbulent heat transfer, geometric description, and interference
heating. Specific subtasks in the first phase of the study included addition of
improved pressure computations for flat or nearly flat-bottom configurations,
evaluation of transition criteria and transitional heating computation methods,
review and implementation of additional aerodynamic heating methods for turbulent
flow, and modification of the code to allow additional geometry input options.

The second phase of the study was concerned with evaluating prediction methods for
interference heating, both on flaps and in the vicinity of fins. Two other
computer programs were developed for use with the heating code to generate the
geometry of general three-dimensional bodies from coordinates of points in several
cross-sectional planes. One auxiliary program provides the necessary curve fit
techniques. The other program is a translator code that converts basic geometry
description data in the HABP (Hypersonic Arbitrary Body Program) form (References
2 and 3) to a form acceptable in the geometry code.
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This volume of the report contains an overview of the computer program
capabilities and includes a brief description of the added components. Section 3
discusses those added components for the aeroheating code. A discussion of the
auxiliary geometry codes for surface fitting 3-D bodies may be found in Section 4.
Results of several sample cases are presented in the remaining sections. Potential

users are directed to the Volume II User's Manual for a detailed discussion of the
input description.

Both Volume II and this volume supersede the user's manual for
the preliminary version of the codes, reported in Reference 4.




SECTION II
HEATING PROGRAM DESCRIPTION

This section presents a brief discussion of the basic heating program analy-
sis described in Reference 5 and a discussion of a new technique to determine the
scale factor and an improved entropy swallowing technique. Subroutines and
options added to the program to increase the pressure and heat transfer capability
are discussed in Section 3.

2.1 BASIC PROGRAM FOR AEROHEATING ON 3-D BODIES

A relatively simple computer program has been developed to calculate
laminar, transitional, and turbulent heating rates on arbitrary, blunt-nosed,
three-dimensional bodies at angles of attack in high-speed flow. The technique is
an engineering analysis which does not require a solution of the complete flow-
field equations. In this technique, inviscid surface streamlines are calculated
from Euler's equation using a prescribed pressure distribution. Heating rates are
calculated along a streamline by applying the axisymmetric analog to the three-
dimensional boundary-layer equations. This approximation allows the heat-transfer
rate to be calculated along an inviscid surface streamline by any boundary-layer
method applicable to a body of revolution at zero incidence. The distance along
the three-dimensional streamline is interpreted as the distance along the equiva-
lent axisymmetric body, and the scale factor (which is a measure of the divergence
of adjacent three-dimensional streamlines) is interpreted as the radius of the
equivalent axisymmetric body. Each inviscid surface streamline corresponds to a
different equivalent body of revolution and may be calculated independently of the
others.

In order to keep the calculations simple, laminar heating rates are calcu-
lated by applying the axisymmetric analog to the local similarity method of
Beckwith and Cohen (Reference 6). For turbulent heating rates, a modified form
of Reshotko and Tucker's integral method is used to calculate the momentum thick-
ness (Reference 7). In the original version of the program the momentum thickness
Reynolds number §s used to calculate the local skin friction coefficient with a
technique developed by Spalding and Chi (Reference 8). The skin-friction coeffi-
cient is converted to the turbulent heating rate through von Karman's form of

3




Reynolds analogy factor (Reference 9). A transition region may be prescribed by
defining the beginning and end of transition. Heating rates are calculated within
the transition region as a weighted average of the local laminar and turbulent

values (Reference 10). Either ideal gas or equilibrium air properties may be used
and the properties at the edge of the boundary layer may be calculated using
either normal-shock entropy or variable entropy.

The equations for the streamline geometry and scale factor are singular at
the stagnation point. Therefore, an analytic solution is used for a small region
surrounding the stagnation point, and then heating rates are calculated along an
inviscid surface streamline as it is generated downstream. The number of stream-
Tines to be calculated is chosen to give the desired distribution of heating
rates.

The following list summarizes the options and features available with the
current version of the aerodynamic heating program.
Pressure
Modified Newtonian
Dahlem-Buck
Prandtl-Meyer
Van Dyke
Tangent wedge
Tangent cone
Input values
Flat bottom delta wing
Turbulent heat transfer
Spalding-Chi
Van Driest
Eckert reference enthalpy
Transition specification
Geometric location
Momentum thickness Reynolds number
Integrated unit Reynolds number
Local momentum thickness Reynolds number divided
by local Mach number
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f Analytical body of revolution to describe geometry
: Hemisphere nose - ogive
i Hemisphere nose - cone
Hemisphere - cylinder
; Hemisphere nose - ogive - cylinder

Analytical body to describe geometry
¥ Stlab delta
:i? . Arbitrary body from cross section coordinates
¥l Cross section coordinates
£§1 Cross section described by loft lines

Interference heating
?:} Two-dimensional flap
Three-dimensional fin/plate interaction
Inviscid flow field for boundary layer edge
Normal shock entropy
Variable entropy
Gas state
Perfect gas
Equilibrium air
Viscosity
Sutherland's law
\ Keyes viscosity law
. Wall temperature
' Input enthalpy ratio, calculate temperature
Input temperature, calculate enthalpy ratio
OQutput print option
i Print-out at specified axial locations

-
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Other program features included a flag for laminar or turbulent flow and a

print-out option. The user is directed to the Volume II, User's Manual, Section 3
on input for instructions on exercising the options.




2.2 NEW METHOD FOR CALCULATING STREAMLINE METRIC

The technique used in Reference 5 for calculating the scale factor required
first and second derivatives of the surface pressure with respect to the longitu-
dinal and circumferential coordinates. The pressure and its derivatives were
calculated from either the modified Newtonian pressure distribution or surface
fits to input pressure data. This method worked well for simple body shapes,
e.g., blunted cones, whose geometry could be described by analytical equations.
It was subsequently found, however, that the accuracy of obtaining second deriva-
tives of the pressure by these techniques was poor for complex geometrical configur-
ations and for irregular input pressure data. Therefore, a new technique, called
the two-streamline method, was developed to calculate the scale factor without
using second derivatives of the surface pressure.

In the two-streamline method, for each primary streamline to be calculated a
secondary streamline, very close to the primary streamline, is also calculated
using the same method described in Reference 5. These two streamlines are
traced along the body in a step-by-step fashion by numerically integrating an
ordinary differential equation for each streamline. However, only the pressure
and first derivatives of the pressure are needed in these calculations. For each
step of the integration the scale factor, h, is calculated from the distance
between the primary and secondary streamlines, as shown in Figure 1. The distance
between the two streamlines is A% and, therefore, the scale factor is

}‘ = A JZ C()Si:zi_
&8

where the surface coordinate normal to the streamline is g. This coordinate is
constant along a streamline and its value is assigned at the stagnation point.
However, Equation (1) is not in a form suitable for use in the program. Deriva-
tion of the equation used in the program is given in Appendix A.
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FIGURE 1 - TWO STREAMLINE METHOD

The scale factor, h, is used to calculate the heating rate on the primary
f : streamline only. The only parameter needed from the secondary streamline is its

¢ geometric position on the body at each integration step. The two-streamline
method was found to give much more satisfactory results than the previous method

{iJ : for calculating the scale factor. The elimination of the need for second deriva-
' tives of the surface pressure more than compensates for the additional calcula-
tions required for the secondary streamline. As a result, the new method is
more efficient as well as more accurate than the old method.
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2.3 IMPROVED ENTROPY SWALLOWING TECHNIQUE

Entropy layer swallowing effects are accounted for by using a mass-balance
technique which requires that the mass flux being swallowed by the boundary
layer,apBL, be equal to the mass flux crossing the bow shockwave, ¢SH’ along
an inviscid streamline. In Reference 11 it is shown that the mass flux being
absorbed by the boundary layer is

¢a¢’/z%h 5:27(/‘%)9,,,,4-9%9,”7 (2)

’

while the mass flux crossing the bow shockwave is

S -
%.Hs/o‘, U‘,/ sinl7 hds (3)
o

In the old analysis, the turbulent momentum thickness, om 7> Was determined from
the axisymmetric, momentum integral equation,

dgmr C ( z G, au, Y
—_mr L +{M, - 2?'-//;;> mT e _ _.£ELZ"£i£Z (8)
ds 2 ¢ </ & ds h ds

where the coefficient of friction, Cf, was calculated using one of the turbulent
skin friction options listed in Section 2.1. This equation was evaluated using a
fourth order, Runge-Kutta numerical integration technique. An iteration procedure
was used to converge ¢BL and ¢SH by continually improving the estimate for the
shockwave angle, I', and consequently pe and Ue’ the local density and velocity
respectively.

In the new analysis, the functional relation (peUeh Om T), instead of

q“ T is the parameter that is integrated along the streamline direction.

Utilizing Equation (4) it can be shown that

df o4 h @, o
[/e :/5 17) =/0¢UJ'7£-(Hc+9/¢‘4h9»¢r(7:‘§9(5)

Note that in this expression there is no need to calculate dh/ds as there is in
Equation (4). Thus, peUeh On.1 18 known (from the Runge-Kutta integration)
L]

and no iteration for P O Ue is required in the entropy calculation.
8
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SECTION III
OPTIONS ADDED IN THIS STUDY g

Several subroutines were prepared in this study to increase the options
available to the user for local pressure, turbulent heat transfer, transition
specification, geometry descriptions, and interference heating. The following
subsections discuss features of the added pressure, turbulent heat transfer, and
______ interference heating routines. Cross section geometry is discussed in Section 4.
n The user is directed to the Volume II, User's Manual, Section 2 on input for
instructions on triggering the various options.

3.1 ADDED PRESSURE OPTIONS

The new pressure options added that are analytical in form are, in general,
valid only at Tow local impact or incidence angles. The incidence angle is the
angle between the free stream and the body tangency plane at the desired location.
(Input pressure values, of course, are valid over the entire vehicle). Using the
modified Newtonian pressure distribution in the stagnation region results in a
mismatch with the Tow impact angle expressions. This mismatch is eliminated by
substituting a different relationship for the sinz(s ) term in the Newtonian
{ distribution. An exponent less than 2 on the sin (8 ) retains the general shape
‘ of the Newtonian distribution, but predicts greater pressures at low impact angles
! which can be matched to the appropriate distribution while retaining the proper
stagnation value. The resulting expression is:

g

N
. (6)
Co =
P Cpsfag ("m 5)
where

CP = pressure coefficient
CPStag = stagnation value of pressure coefficient

S = impact angle

An iterative procedure is employed to determine the exponent at the point where
; the pressures and pressure derivatives of the two correlations match. This
‘ concept is 1llustrated in Figure 2. A typical Dahlem-Buck distribution curve does




not cross the Newtonian curve for an exponent of 2, but appears to be tangent to a
curve for an exponent between 1.8 and 2. The solution yields an exponent of 1.86,
tangent at & = 18.8°. By inspection, the 1.86 curve would be quite simi-

lar to the 2.0 curve.

0.7

0.4f -

0.3f~-

0.2

Pressure Coefficient Ratio, CP/CPgraq

0.1

! IPACT AGLE (8) DEGREES

FIGURE 2 - MODIFIED NEWTONIAN PRESSURE DISTRIBUTION

A1l the analytical-type pressure routines are written as functions of the
impact angle, §, where 8 is the complement of the angle, ¥, used in the Newton-
ian pressure routine in the form coszw . Relating the partial derivatives of
Tocal pressure then to the primary independent variables of X and ¢ results in the
following expressions:

— A

!’ a(P/G') - 3‘9 aCP a(CO.’z¢) (7)
Z aX 2R s cosy |\ 25 X
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CP pressure coefficient
stagnation pressure
free stream dynamic pressure
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3.1.1 Modified Dahlem-Buck

The modified Dahlem-Buck method uses an empirical relationship which approxi-
mates tangent cone pressures at low incidence angles and approaches Newtonian
values in the stagnation region at large incidence angles. The original method
has been shown to be in good agreement with data on highly swept shapes at large

hypersonic Mach numbers and modifications extend the range to lower Mach numbers
(Reference 12). Thus,

CPCornjH‘ZO) (9)
Cpconc. (M= 20)

Cormos = CPoo

where C is the modified Dahlem-Buck pressure coefficient.

PupB

The original equations are

_ 1.0 . 2
for $% Smarew  CPpg = (sin“s)jﬂ +tol sin & (10

. N
for 5>S~41¢u CP = Cp’hg sin 8 (11)

1f, at small values of &, the bracketed term exceeds 5.0 it is set at 5.0.
11




Reference 12 shows a curve fit of data which permits the cone pressure
coefficient fraction to be analytically defined, so that

CPcanc(cho) - l.o = asn
Cpeone (M= 20)

(12)

where & is the impact angle in degrees, and

. An M, -0.588
a = (6.0 - 0.31”1‘,) + sin ( IfZO m (13)

s . JaMy,-09
-n = LI5 + 0.5 sin =0 'GTr (14)
3.29

3.1.2 Prandt]-Meyer
This method is based on a technique recommended by Kaufman in Reference

13 which involves matching the modified Newtonian and Prandtl-Meyer expansion

methods at a point where the pressure gradients with respect to axial distance

calculated by each method are equal. A local Mach number at the match point,

Mq, is assumed and iterated on until the Prandtl-Meyer free stream static to

1 local stagnation pressure ratio matches the Newtonian value. At the match point,

‘ the local to stagnation pressure ratio is given by:

L e e b ek e

-
r-1 ;
Z ‘
(15)

2 +(¥-1) M;

2 r—
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and the free stream static to stagnation pressure ratio is given by

Py ) ¥ M{ @
AR I +(Mz-1) (1-a) 1e)

The angle of incidence at the match point can be determined from

Pee

2 P
sin §, = 17
3 T R o

Fs

and the Prandti-Meyer angle for expansion from sonic flow to the match point is

(18)

The Tocal pressure at some arbitrary incidence angle is determined by first
iteratively solving for a local Mach number that satisfies Equation (18) for
expansion from sonic flow to the incidence angle and then substituting that Mach
number in Equation (15).

There is no pressure mismatch between Newtonian and Prandtl-Meyer so that the
Newtonian expression remains unaltered.
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3.1.3 Van Dyke
This method is based on the unified supersonic-hypersonic small disturbance

theory of Van Dyke in Reference 14. The method is valid at small incidence
angles for thin profile shapes and is given by

2
2 ¥+
CP = 9 {;| + ; + sz,(Miz_,) (19)

3.1.4 Tangent Wedge

The tangent-wedge pressures are calculated using the oblique shock
relationships of NACA TR-1135 (Reference 15). The basic equation is a cubic
relating the local shock wave angle to the angle of incidence.

3 2
. 2 .
(J‘M‘Q’) + b(ﬂn %5) * c(_;ng;) +d = o (20)

where

0SH = shock angle

wedge angle

O
"




The roots of the above cubic equation may be obtained by using the trigonometric

?{ { solution procedure outlined in Reference 16. The local pressure is related to the
shock angle by

o,
R—— )

S

4( : sin”

Cp = (,.,,_,)Mi';" ) (21)

3.1.5 Tangent Cone

- The tangent cone method used here is the approximate solution devised by
Hammitt and Murthy in Reference 17. They expand the expression for velocities
& between the body and the shock by a Taylor series in terms of h, where

h = 6 - e, (22)

@ is the conical ray angle and oc refers to the incidence angle of the body.
Z‘J The value of h at the shock (hSH) is given by

-5 286- !

i ’ E’-(J"#J)JmT
Sin 295
IE‘. (Y+.s):m'€c_]

The correct solution is the smaller positive value. The local pressure is given
by

(23)

(r-1)sin’q.+(2/1l)

2
+ -Ez - (.\"+5) J‘/'nz—ea'
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3.1.6 Ilnput Pressures

One of the options in the aerodynamic heating program is to use input
pressure data to calculate the inviscid surface streamlines and heating rates.
These input pressures may be experimental data or calculated from some other
computer program. A computer subprogram has been prepared to "surface fit" this
data. The subprogram calculates the pressure ratio P/Ps and its derivatives,
a(P/PS)/b¢ and a(P/PS)/aX, at any position (X,¢) on the body.

It is required that the pressure data be input to the computer program as the
ratio P/PS at a number of longitudinal positions (X) in several meridional
planes (¢). The pressure data should be smoothed before input. The longitudinal
positions where data are input may differ from one meridional plane to another.
Also, the meridional planes need not be evenly spaced, but the first plane must be
the windward plane (®= 0) and the last plane must be the leeward plane (= 180°).
In addition, one input pressure point in the windward plane must be the stagnation
point (P/PS=1 ).

The computer subprogram first fits longitudinal curves (P/PS vs X) through
the pressure data in each meridional plane separately. A cubic is curve fit
through two successive data points in the longitudinal direction. The coeffi-
cients for each cubic are determined by requiring that cubic segment to pass
through the two data points and have the same slopes as those at the two data
points. The slope b(P/PS)/BX at each data point is determined beforehand by
fitting a parabola through three points, the point in question and the data point
on each side. Note, however, that the parabola is used to determine the slope
only. Once the slopes are determined, a cubic is curve fit through two successive
data points. Special consideration is given to the stagnation point (in the
windward plane) in that the longitudinal slope b(P/PS)/aX is forced to be zero
at this point.

After longitudinal curves are fit through the pressure data in each meridional
plane, coefficients for these curve fits are stored. Then, when this subprogram
is called in the heating program, the value of the pressure ratio (P/PS) and its
Tongitudinal derivatives a(P/PS)/bX can be calculated in each meridional plane
for a specific longitudinal pasition (X). In order to calculate the pressure

18




ratio and its derivatives at a specific circumferential position (¢), a circumferen-
tial curve is fit through the calculated values of (P/Ps) in each meridional
plane. This curve fit is accomplished by fitting parabolic arcs between succes-
sive values of P/PS in the meridional planes. The parabolic arcs match pressure
and pressure derivative a(P/PS)/a¢ at each meridional plane. This curve fit
gives the value of P/PS and a(P/PS)/a¢ at the specified body position (X,$).

In order to obtain a(P/PS)/bX, a second circumferential curve is fit through the
: calculated values of a(P/PS)/aX in each meridional plane. This curve fit is

};r also accomplished by fitting parabolic arcs between successive values of
b(P/PS)/aX in the meridional planes. This procedure is used for each prescribed
c}i body position (X,d).

3.1.7 Flat Bottom Delta Wing
Data presented by Bertram and Evérhart in Reference 18 for pressure distribu-

{ tions on the flat bottom portion of a delta wing indicate that a Newtonian
3 l analysis does not properly predict the pressure behavior in the vicinity of the
A leading edge-flat bottom tangency. Spanwise distributions at low angles of
attack appear to form a minimum at the shoulder, rising to a centerline value
greater than the Newtonian value. (See Figure 3). At higher angles of attack
1 the shoulder minimum becomes less pronounced and disappears at angles of attack
j approaching 10°. This can be seen in Figure 4. In all cases, however, the
i
\

centerline value seems to be greater than the Newtonian value. This suggests the
use of some analytic function or functions connecting Newtonian pressures on the
leading edge with a centerline value. Development of the analytic function
indicated that it was sufficient to correlate the spanwise pressure distribution
in terms of only the spanwise meridional location. However, it was necessary

to divide the analysis into three zones.

— A L e

Zone 1. A match point on the leading edge inboard to the shoulder.

Zone 2. The shoulder inboard to a point on the bottom where the pressure is
- essentially the centerline value.

; Zone 3. The essentially constant pressure inboard to the centerline.

These zones are indicated on Figure 5 by means of the ¢ angles. ¢E is the
location of the peak pressure, PE’ on the leading edge, or the location of the

17
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stagnation line. ¢“ is the match point between the modified Newtonian distribu-
tion on the leading edge and the flat bottom delta wing pressure analysis assumed
to be midway between ¢E and the shoulder. d’s locates the shoulder. ¢F is

the point where the pressure approaches the centerline value. The distance
between the shoulder and ‘¢F is an input parameter which is usually set equal to
the distance from the shoulder to the match point. Note also the “crown" indi-
cated on Figure 5. It was found necessary to provide a negative spanwise pressure
gradient immediately outboard of the centerline for those cases where the shoulder
pressure was less than the centerline value.
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FIGURE 3 - MEASURED PRESSURE DISTRIBUTION ON WINDWARD SURFACE
OF DELTA WING, 0° ANGLE OF ATTACK
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The analytical expressions describing the spanwise distribution are a cubic
for each of zones (1) and (2), and a quadratic for the nearly constant pressure
zone at the centerline. The cubic takes the form

I 2
__E=/4/¢S +5¢ o+ C;é + D (25)
A
The derivative is obtained by merely differentiating Equation (25).
2
A ‘ﬂ’@: FAS + 284 + C (26)
EY
;\% In like fashion, the quadratic is
E Z
F. B¢ » c# +2 (27)
s

and

2FB) . 28 + c (28)
O

At any given body station the pressure and pressure derivative at the match
point are known from the Newtonian distribution. The pressure at the centerline, 1
at ¢, and at the shoulder are also known, and the derivatives at the centerline
and at the shoulder are both set equal to zero. These boundary conditions are
sufficient to determine the coefficients of the appropriate expression for each

4 3 zone. At body stations in the near nose region the centerline pressure may be
! equal to or greater than the maximum pressure on the leading edge. For such a
condition, the multi-zone analysis yields unsatisfactory arithmetic results. It 1

: is therefore necessary to fit a single cubic equation between the centerline and
o the maximum pressure on the leading edge.




B
. An expression for the centerline pressure is suggested by the work of
- McElderry in Reference 19.
.
' Pcu. = T -+ PASYHPT (29)
L D NOSE Dnase
'
k. and
-
- 2 ([ P
b T= 0067 M, ( "’> (30)
P
' S
% where
} PASYMPT = asymptotic value of pressure at X = »
S = factor to make expression match with Newtonian
Data from both McElderry and Bertram and Everhart indicate that a tangent cone
pressure be used for the asymptotic value in the range of conditions valid for
this study. Equation 29 must be used to match with a Newtonian distribution in
the stagnation region by varying the factor S. A typical centerline distribution
is shown in Figure 6.
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Completing the flat bottom delta wing pressure analysis is a correlation of
the shoulder to centerline pressure ratio. A comparison of the centerline and
shoulder pressures at typical conditions is presented in Figures 7, 8, and 9 for
angles of attack of 0°, 5°, and 10°, respectively. These data were extracted
from Reference 1g. There is very little difference between the two pressures at
10° angle of attack, as can be seen from Figure 9. At some axial distance less
than 8 nose diameters from the vertex of the delta all the pressures become
constant. Additional data from Reference 18 are included in Figure 10, which
presents the ratio of the shoulder to centerline pressure for a range of condi-
tions. It is seen from Figure 10 that each curve may be approximated by two
straight lines. One line varies between a pressure ratio of 1.0 at X/DNOSE =
and some lesser pressure ratio, QM’ at X/DNOSE = XC' The second straight
line is constant valued at QM for X/DNOSE greater than XC' Within the range
of conditions examined, the minimum shoulder to centerline pressure ratio, QM,
is a function of Mach number and Reynolds number, and is assumed to be a linear
function of angle of attack, such that QM is equal to 1.0 when the angle of
attack is greater than 10° and QM is equal to QMM when the angle of attack is
zero. Therefore, QMM is a function of Mach number and Reynolds number. The
derived equations are:

0

-¢
Oppg = 0-052 /M - 0.96x/0 Re, + 0292 (31)

QN = 0/ o (/.a- ‘?rm) + Qrppy (32)

The axial location, XC’ beyond which the pressure ratio remains constant is
correlated as a function of QM and is shown in Figure 11.
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Typical spanwise pressure distributions on the bottom of the X-24C for the
case presented in Section 6 are shown in Figures 12 through 18. The Newtonian
pressure distribution is included on the figures for comparison. Data are for
twe angles of attack, 4° and 12°; however the flat bottom is inclined an additio-
nal 3.27° to the free stream. The leading edge vertex is at X = 2.73. Figures 12

and 16 are for an upstream axial location where the centerline pressure is greater
than the peak pressure on the leading edge. Figures 13 and 17 are for a location

where the centerline pressure and the peak pressure on the leading edge are nearly
equal. Figure 14 represents a station where ¢F is close to the centerline.

Figures 15 and 18 are at downsiream locations where the ratio of shoulder to
centerline pressure is constant. For the 12° angle of attack, however, the shoulder
pressure equals the centerline pressure.

The Bertram and Everhart data are for one sweep angle only--70° --and any
attempt to apply the above correlations to other sweep angles requires verifica-
tion. The Mach number range for the data in the correlation is 6.8 to 9.6, and
the Reynolds number range is 4.4 x 104 to 2.5 x 105.
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‘ 3.2 ADDED TURBULENT HEATING OPTIONS

Two routines were added to provide additional options for the Tocal turbulent
flow heating rate. One routine is the Reference Enthalpy method of Eckert. The
other routine is the Van Driest method. Both methods are discussed in the follow-
ing sections. Heating rates on flaps and in the vicinity of fin induced shocks
are discussed in Section 3.3.

3.2.1 Eckert Reference Enthalpy

; The Reference Enthalpy method for computing heat transfer is in widespread
use. In effect, the heat transfer coefficient and other properties are evaluated
at the temperature corresponding to a reference enthalpy, given by the following
expression:

h* = he+ 05(h, -he) + 0.22(hgy-h,) @

A
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where

e vrefers to boundary layer edge conditions
refers to wall conditions
* is the reference condition

haw is the adiabatic wall enthalpy and is related to the recovery factor by

2

U (34)

haw =h¢ + r 2

z

where

Ye

r

boundary layer edge velocity
recovery factor (= Pr1/3 for turbulent flow)

A constant value of 0.725 is assumed for the Prandtl Number, Pr. The heating rate
for turbulent flow is given by

#,0.8 4
} SJ (Pr¥)*s
where
S = distance along streamline from the stagnation point
J = mechanical equivalent
Pr = Prandtl number
Re = Reynolds number

T

Equation (35) which is valid for a flat plate gives reasonable results for turbu-
lent heating to an arbitrary blunt body. A summary discussion of the Reference
Enthalpy method is given in Reference (20) and a detailed discussion of the method
may be found in the survey report by Eckert (Reference 21).
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3.2.2 Van Driest

One of the options for calculating turbulent heating rates is the Van Driest
I1 method (References 22 and 23). In this method the momentum thickness Reynolds
number is obtained from the integration of the integral form of the momentum

equation along an inviscid surface streamline. Then a transformed momentum
thickness Reynolds number is calculated from

Rce = F, R¢9 (36)
where F’a =/U¢ //“w and -R:a is the

transformed (incompressible) momentum thickness Reynolds number. This transformed
value is used to calculate the transformed (incompressible) skin friction coeffi-
cient, f} from the Karman-Schoenherr formula (Reference 23). The transformed

b}
skin friction coefficient is then converted to the compressible skin friction
coefficient by the relation

C, = E;/ Fe (37)

where

Y
F = ~_E- d ._q_ (38)
¢ Ce Ue

-° -

The expression for Fc can be evaluated in closed form for a perfect gas, but the
integral must be evaluated numerically for equilibrium air. The well-known Crocco
temperature distribution through the boundary layer and a temperature recovery
factor of 0.9 are used to evaluate the integral for Fc'

The 1ocal skin friction coefficient is then converted to the turbulent
heat-transfer rate through the von Karman form of Reynolds analogy factor.

3
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‘ 3.3 INTERFERENCE HEATING

-:1 This program also addresses heating resulting from strong shocks produced

‘ by flaps and fins. Flap heating is characterized by flow separation and subse-
quent reattachment. The fin problem is characterized by localized heating in

the vicinity of and influenced by the fin induced shock wave. These two inter-
ference heating methods are triggered only at the end of a streamline calculation;
i.e., the last calculated streamline axial location corresponds to either the flap
3 hinge line or the fin leading edge. Boundary layer edge conditions at that point
3 serve as free stream conditions to the interference heating calculations. Such
= edge parameters include pressure, temperature, velocity, and Mach number. Other
‘ﬁﬁ necessary parameters include boundary layer thickness, Reynolds number, and

;%1 streamline direction with respect to the vehicle axis. The following sections
describe the analyses for heating on a flap and the heating caused by fin
interference.

3.3.1 Maximum Heating Rate on a Flap

The adverse pressure gradient caused by a flap or other compression ramp

results in boundary layer flow separation for all except the smallest gradients.
If separation occurs, the streamlines in the external flow will be deflected, as
illustrated in Figure 19. The effect of separation is to alter the flow geometry

drce i
L e b S e —

such that the supersonic flow will undergo two stages of weak shock wave compres-
sion; separation shock and reattachment shock. The external inviscid flow and the
viscous separated flow are interdependent through a pressure interaction. There
remains a viscous fluid layer outside the dividing streamline which behaves much

, the same as a continuance of the original boundary layer and is referred to as a

: shear layer. The nature of the pressure rise and local flow are shown in Figure

2 20. It is seen that the pressure waves propagate upstream of the disturbance,
allowing the pressure gradient to spread over a long distance. In this analysis,
maximum heating on the deflected surface is assumed to occur at the point of
reattachment. Thus, this analysis addresses itself mainly to the determination of
the reattachment point.
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The analysis for the maximum heating rate to a flap or other compression ramp

is divided into three parts:

(1) Determining if flow separation occurs at a particular ramp angle.

(2) Determining the geometry of the separated region; i.e. the location of
separation and the point of reattachment with respect to the ramp hinge
line.

(3) Determining the heating rate itself.

Incipient separation was analyzed by Kessler, Reilly, and Mockapetris (Reference
24). The correlation for incipient separation pressure is a function of the
undisturbed boundary layer thickness Reynolds number, Rea , and the Mach number,
Me’ and is presented in Figure 21. The wedge angle that produces incipient
separation pressure is the miminum deflection angle necessary to produce separa-

tion. The oblique shock compressible flow relations of Reference 15 may be
used.

(39)

“T~
Sl
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o
I
-
|
\(\
N
| )

Z 2
7‘0/7294- = —f——‘—;/ 280, = (5=) + (1)F g
¥M, -f-f-/ (ﬂ/)f + (/—/)

where

(]
L]

p incipient separation pressure coefficient
wedge angle for incipient separation

- -
-t e
"

The criterion for turbulent ‘flow in the separation analysis is also seen from
Figure 21. Turbulent flow occurs at values of the correlating parameter,
Rea/Me3, greater than 400.
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The pressure behind the separation shock--indicated on Figure 20 as the
plateau pressure--leads to the determination of the deflection angle of the
dividing streamline. Wuerer and Clayton (Reference 25) present correlations of
the plateau pressure coefficients in both Taminar and turbulent flow regimes,
which are reproduced here as Figures 22 and 23. The curve through the data
points in each figure has been approximated by an empirical relationship.

2 ~Je
(PPLAT = féo &5 (M“ __,) (41)

(/za°)7Lao7'/;> h7e (flf:é

= plateau pressure coefficient

b e

(/"/ )/ (42)

C
PpLAT

Re = Reynolds number based on distance along a streamline

v0 the hinge line

S




Equations (39) and (40) can be used with the appropriate plateau pressure para-
meters to determine the deflection angle of the dividing streamline, OD. This
deflection angle is shown in Figure 24 as a function of the Mach number and
Reynolds number prior to separation. The plateau pressure and other conditions
behind the separation shock can be used as upstream conditions to the reattachment
shock, for a wedge angle equal to the difference between the flap deflection angle
and the deflection angle of the dividing streamline. In this manner, the pressure
behind the reattachment shock becomes the pressure of interest on the flap and can
be determined by the usual oblique shock relationships. Calculated plateau
pressure and flap pressure are compared with measured data in Figure 25. The
measured data, for Me = 2.76, is taken from Reference 24.
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The length of the separated region (or dividing streamline length) is shown
in Reference 25 to be a function of certain reference parameters which are indepen-
dent of the geometry; namely an effective deflection angle, ORer> reference
separation length, and a reference boundary layer thickness, SREF‘

Lser  _ [ Lsep x 8 rr (3)
S 8 /rer Y0

Lsep - K Priap = Forar (44)
§ REF Pe

where

LSEP length of the separated region
PFLAP flap pressure

PPLAT plateau pressure

undisturbed boundary layer edge pressure ahead of hinge line
= undisturbed boundary layer thickness

Pe
5
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The following table lists the reference quantities required to make the calcula-

tion. The quantities M,.., (Re_) and K are based on experimental data

in the Mach number range from 1 to 7.

LAMINAR FLOW TURBULENT FLOW

(M) per 20 28

(Reg)per 2.0 x 10 2.0 X 10

K 105 4.15 |
- 2.687° (1.4) 12.84° fr = 1.4) ]

The separation geometry is determined from the separation length and flow deflec-
tion angle, using trigonometric considerations.

S/n (6’, o= 9,)
L - L X L4
HINGE SEP 7 (/80 - y ) (45)

sin 6p

L = L b 4 - (46)
FLar e sin (160 - Errar)

e

where

LHINGE = length from separation point to hinge line
LFLAP = Jength along flap from hinge line to reattachment point

Bushnell and Weinstein, in Reference 26, correlate the peak heating at

reattachment with a shear layer thickness Reynolds number, shown here in Figure
26. The Reynolds number is defined as:

Re Sow UFLAP &we«yz

&=

(47)

THEAR w50 (Crrap = 65)




2

e

where
Uf]ap = velocity in reattachment region
Py = density in reattachment region at wall temperature
My = viscosity at wall temperature
ashear = shear layer thickness

Reference 26 also gives expressions for the shear layer thickness. In their
approach it was assumed that the shear layer thickness was equal to the undisturbed

boundary layer thickness plus the growth of a free shear layer from zero initial
thickness. Hence,

Yz
L
( %HEHI) = 5 + So .S'EP/‘.,_EP )
L

/.’5/’ User

(49)

where the subscript SEP refers to quantities evaluated in the separated region, at
the plateau pressure behind the separation shock. The straight lines on the
correlations of Figure 26 have been numerically fitted with the expression

st
Stex = Cst ( R e ) (50)

where

Stog = Peak Station Number at reattachment

The constants in Equation (50) are listed in the following table.

LAMINAR FLOW TURBULENT FLOW

CSt 0.199 0.0204
nst ‘0.5 '002
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3.3.2 Fin/Plate Interaction

This section considers the interaction resulting from high speed flow
around a sharp fin normal to a flat surface. The oncoming flow produces an
oblique shock wave which interacts with the boundary layer on the adjacent flat
surface. This interaction is depicted in Figure 27. The interaction zone can
be divided into two regions--an inner region and an outer region--separated by the
fin induced shock wave. The inner region is characterized by a sharp peak in the
pressure and the heating rate, both of which may be several times greater than the
undisturbed values. The outer region is in a turbulent separated state and the
pressures may be predicted with 2-D correlations. The separation line can be
identified in oil flow photographs and it was found that the pattern resembles
hyperbolfc curves. Figure 28 was taken from Hayes, Reference 27, and shows a
typical oil flow pattern. A coordinate system for the separation line was also
worked out in Reference 27, shown in Figure 29, and is approximated by asymp-
totes to the hyperbolic curves.
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FIGURE 28 - TYPICAL OIL FLOW
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FIGURE 29 - SEPARATION LOCATION COORDINATE SYSTEM

Scuderi, too, Reference 28, has developed engineering methods for predicting
three-dimensional interaction heating. A portion of that analysis is summarized
here. Typical surface pressure and heat transfer profiles in the interaction flow
region are sketched in Figure 30. These profiles, perpendicular to the free-
stream flow direction, are presented normalized by their respective undisturbed
surface values (lengths are normalized by §). Away from the fin (at large y/§ )
the flcw is undisturbed and the pressure and heat transfer coefficient equal to
the undisturbed value (denoted by Pe and hu, respectively). As the free
stream flow enters the interaction region, it is first compressed by initial
compression waves and a pressure rise occurs between the upstream extent of
disturbance and the shock wave. The increase results in either a plateau or an
initial peak pressure. Eventually, a second much higher pressure peak occurs
between the shock wave and the fin. This higher peak is the result of reattach-
ment of the boundary layer. The surface heating profile generally increases more
slowly (solid 1ine) from the undisturbed heat transfer value and it also reaches a
peak between the shock wave and the fin. Under certain conditions, however, an

initial peak heating value (dashed line) develops between the upstream disturbance
and the shock wave, as is true for the pressure profile.
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FIGURE 30 - TYPICAL SURFACE HEATING AND SURFACE PRESSURE PROFILES

The procedures for predicting pressure and heating profiles result from the
fact that the pressure and heating profiles are similar. For example, both
profiles have higher peaks between the shock and the fin, and under some condi-
tions, both profiles have initial peaks between the upstream extent of disturbance
and the shock. This analysis is divided into several parts, as outlined below:

(1) determining certain distribution features

(a) peak pressure and location

(b) peak heating and location

(c) location of separation point and heating

(d) location of the shock

(e) location of onset of turbulent interaction zone
(f) plateau pressure and separation pressure

(2) heating distribution from the peak to the shock
(3) heating distribution from the peak to the fin
(4) heating distribution outboard of the shock
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The coordinate system used to present the heating distribution is aligned with the
effective free stream to the fin, and the distributions are given normal to this
free stream at various axial locations measured along the fin. The effective fin
deflection angle (GEFF)FIN’ then, is determined from the streamline direction

and the orientation of the fin with respect to the vehicle axis. The shock wave
angle, OSH’ produced by a wedge angle equal to the effective angle of attack can

- then be determined by the procedure presented in Section 3.1.4.
The angle defining the location of the peak pressure and peak heating is

given by (Reference 29).

QP/( = 024 QJH - (QKFF)F/N + (BEFF);/N (51) !

The peak location and the shock location are given by

/
YPK = X COS'(QEF;')F/N (fan ng) (52) ?
|
| y (53)
| Ysi = X cas( Hgfd ( fan Bsyy )
| FIN
' where
E X' = location, measured along fin, see Figure 27.
| ; opk = angle to peak pressure and heating location, see Figure 28.
_ 1 Referring to Figure 29, an equation approximating the separation asymptote is
= given by
-
] J
; 2
-4 b _2 2 (54)
| Y = (— (X —a
L a
| where

X = distance measured along shock
Y = distance measured normal to shock
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Hayes shows that the parameters a and b in the above expression correlate well
with the strength of the shock wave, which is indicated by Me sin 6

correlations are presented here as Figures 31 and 32.
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The outward extent of the disturbance has been correlated by Scuderi as a
function of the effective angle of attack and the distance downstream of the fin

leading edge. This extent is defined as the distance between the initial rise in
pressure in the interaction region and the shock wave. Data for each fin deflec-

tion angle collapse to approximately one line, resulting in the following
expression:

A
__éy— = (0. o//5 gF'IN + 0/)-—2,(— + 0./14 gFIN (55)
where

X = distance measured from fin leading edge

AY = distance outboard of shock




The peak pressure was correlated by Hayes, indicating a relationship of the
form

P, “ex

PK y
= (/ 74’ JS/? 9‘,” (56)
v

The exponent Npk is a function of X/8 and is shown in Figure 33. Hayes also
> correlated the plateau pressure and the separation pressure. The plateau pressure
4 is shown in Figure 34 as a function of Mesin oSH' For purposes of this

analysis, the plateau pressure correlation is reduced to the straight line

Foar - 0 566e7 ( M, St 9%) + 0. 93335 (57
*

k- and is assumed to be the value at the shock. The separation zone pressure is
' shown by Hayes to be a linear function of the plateau pressure, given by

@E’ = 073 (_'0”_4'27’ (58)
z %
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Peak heating has been correlated by Hayes in much the same manner as the peak
pressure. The following expression results.

h

PK = [Mc 51yl + 025 ()

h

o

where gy is a function of X/& and is shown in Figure 35. Scuderi corre-
lated the heat transfer at the location of separation with the separation pressure
and presents the following expression approximating the data.

| 0.85
hJEP - ( e (60)
h, R

For purposes of this analysis the heating distribution between the shock and
separation is assumed to be constant at the separation value.
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Hayes presents the results of an analysis by Token (Reference 29) in which

Token derived equations to govern the heat transfer distribution between the peak
and the shock locations. The expression is

b s —4———-_,- Y 0.8
YT = / - - —— (/ *~ 7— (61)
Do = Pen Yor el

where ¢ is the Y-coordinate measured from the shock normal to the fin, see Figure
28. The constant C in the expression is the pressure gradient parameter given by

C = FPK"'E’H

(62)
Fsm
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Because it has been assumed that the heating distribution between the shock
and separation is a constant, the slope of the heating distribution curve must be
set equal to zero at ¢/¢PK= 0 even though this contradicts experimental evidence
given in Reference 29. Consequently, the value of n in the exponential terms must
be adjusted accordingly. Thus, by differentiating Equation (61) and setting the
resultant expression to zero ac wlupPK = 0, we find

n= c —-g (63)

As can be seen, the heating distribution from the peak to the shock is a function
of both the pressure and the heating at the peak and at the shock. The heating
distribution from the peak to the fin, then, is the mirror image (in absolute Y)
of the distribution from the peak to the shock. The heating rate is considered
constant from the separation point to the shock, at the separation value. The

heating distribution is 1inear between onset and the separation point, the undis-
turbed value being used at onset.

Results of the computation for a sample case are shown in Figure 36. The
example is taken from Scuderi. His calculation, along with measured data, are
compared with the present calculations.
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SECTION IV
SURFACE FITTING 3-D BODIES

Two auxiliary computer codes are provided with the main heating program to
aid in the geometric description of the body to be analyzed. The first of these
codes is the geometry program itself which generates details of the surface from
coordinates of points in seveiral cross-sectional planes or from loft line data.
This program does curve-fitting and generates the coefficients input to the
heating code in the proper format. It is coded in such a way that many of the
routines are common also to the heating program. Included in the program is the
user option to verify the fits at selected circumferential locations and body
stations in parametric form.

The second of the two auxiliary programs is a translator code which operates
on geometric data in a particular format, specifically Hypersonic Arbitrary Body
Program (HABP) format, to set up the data in the proper format for the geometry
code. HABP format is described in References 2 and 3. Geometry data in HABP
format, in general, are used by other groups interested mainly in aerodynamic
characteristics. The translator code was written to enable the individual to use
the same set of geometric data for both the aerodynamic and the heating calcula-
tions with a minimum of additional input.

The following sections describe the methods employed by these two programs.
Included are a brief description of the geometry method by both cross-section
coordinates and loft lines, a recent improvement in fitting the longitudinal
variations, and a discussion of the translator code. Actual input and output

from these programs, along with examples, are discussed in Sections 2 and 3 of
Volume II.

4.1 GENERAL DESCRIPTION OF GEOMETRY METHOD

A computer program was developed in Reference 30 for generating the geometry
of three-dimensional bodies from coordinates of points in several cross-sectional
pltanes. In that method, segments of ygeneral conic sections are curve fit in a
least-squares sense to the points in each cross-section. These segments of
general conic sections are constrained to have continuous circumférential slopes
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at their boundaries, unless slopes are input at the boundaries. Figure 37 illus-
trates this concept. The specific conic section for each segment can be defined

by the two points at the ends of a segment (called control points), an intermediate
point > he curve and a slope point which is tangent to the curve at the two end
points ., trol points). See Figure 38. These four (4) points are used to define
the conic section for each segment around the circumference in a cross-sectional

T

2 plane.
]
-
]
X
,; ‘ \
| O CONTROL POINTS  END OF 2ND SEGMENT !
| A DATA POINTS ;
{ CONIC SECTION FOR 2ND SEGMENT

7 eatp-

END OF 1ST SEGMENT;
BEGINNING OF 2HD SEGMENT

CONIC SECTION FOR 1ST SEGMENT

BEGIMNING OF 1ST SEGMENT

FIGURE 37 - CURVE FIT IN CROSS-SECTIONAL PLANE
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2 1 The longitudinal variation of the input cross sections is determined by
-
|

fitting a three-dimensional curve in the longitudinal direction through each of
the four points used to define a conic section for a cross-sectional segment (see
;J 2 Figure 39). Then for a value of x between the input cross-sectional data, the
. coordinates of these four longitudinal lines will determine the conic section in

the cross-sectional plane at that value of x.

Unlike curve fitting the input
1 d coordinates in the cross-sectional planes, the three-dimensional longitudinal

curves must pass through each of the corresponding points in all the cross-
sectional planes.

Each three-dimensional longitudinal curve is represented by two
planar curves by projecting it onto the x-y and x-z planes. In Reference 30 the

parametric method of cubic splines was used to spline fit each planar curve, with
the chordal distance between the coordinate points as the independent parameter.




O CONTROL POINT, (Y_,Z_) AND (v,.29)
O INTERMEDIATE POIMT, (V,.2,)
0 SLoPE POINT, (Y ,2.)

FIGURE 39 - LONGITUDINAL CURVES THROUGH THE FOUR POINTS
USED TO DEFINE THE CONIC SECTION FOR THE SEGMENT

4,2 IMPROVEMENT TO LONGITUDINAL FITS

The method used in Reference 30 for curve fitting general conic sections to
input coordinates in cross-sectional planes has been found to give good results.
However, the parametric method of cubic splines used to curve fit the three-
dimensional longitudinal curves was found to be unsatisfactory for a number of
geometries tested. Therefore, a new method was developed for fitting these
longitudinal curves. As before, each three-dimensional curve is represented by
the two planar curves obtained by projecting it onto the x-y and x-z planes. Each
planar curve is defined by a cubic equation in the x-coordinate between two
successive cross-sectional planes where input coordinates are prescribed. However,
the slope of the longitudinal curve passing through these cross-sectional planes
is determined by fitting a parabola through the point in question and the two
corresponding points in the input cross-sectional planes on both sides of that one
(see Figure 40). In this fashion the cubic equation used to represent the curve
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between two consecutive longitudinal points is determined from the coordinates of |
the two points and the longitudinal slopes at those two points. In this procedure j
the possibility of having discontinuous slopes is not admitted. The longitudinal §
curves will also be continuous and have continuous slopes unless a discontinuity :
in slope is input to the program. This method of representing the longitudinal 3
lines was found to yield better results than the method of cubic splines.

Although the cubic splines have continuous second derivatives in the longitudinal
direction, unwanted wiggles frequently occurred. The new method avoids most of
the wiggles but it does not constrain the second derivative to be continuous. As
in Reference 30, if the new method should yield longitudinal curves which are
unsatisfactory, they may be modified by specifying slopes at longitudinal stations
or specifying selected lorgitudinal curves as straight lines. In addition, the
longitudinal curves in the nose region of blunt-nosed bodies are represented by
ellipses rather than cubic equations. Therefore, the infinite slope at the nose
of a blunted body causes no difficulty.

i-1 ] i+)

- X

A CUBIC IS USED TO DESCRIBE
THE CURVE BETWEEN POINTS

THE SLOPE AT X, IS DETERMINED FROM A
Y PARABOLIC FIT (Y=A +A.X+A.X2) THROUGH
Y OR Z o 2
THE POINTS X, s X;» AND X,

-1

FIGURE 40 - SLOPE DETERMINATION FOR LONGITUDINAL CURVES




4.3 GEOMETRY USING LOFTING TECHNIQUES
As an alternate method for describing the geometry of three-dimensional
bodies, additional routines were developed using lofting techniques to describe
the cross-sectional shape. In some lofting techniques the cross-sectional curve
of the body consists of alternate segments of straight lines and circular arcs as
shown in Figure 41. Here the cross-section can be represented by just the end
points of each segment (control points). Special consideration must be given to
the circular arc segments if they are to be tangent to the adjacent straight-line ;
segments. Since only the two end points and the slope at one end point are Q
sufficient to determine a circular arc, this circular arc may not be tangent to |
the straight line at the other end point as shown in Figure 42. In order to force
the arc to be tangent to the two adjacent straight 1ine segments, an elliptical
arc is used here in place of the circular arc so that it will pass through the two
end points and be tangent to the straight-line segments at both end points.
Note that the elliptical arc may be a circular arc if the appropriate end points
(control points) are selected for a cross section. Three-dimensional longitudinal
curves are fit through corresponding control points using the same method as
described in the previous section. Note, however, that each segment in a cross-
sectional plane here is defined by two points whereas the geometry technique

CIRCULAR ARC

LIRCULAR ARC /
STRAIGHT LINE

FIGURE 41 - BODY CROSS SECTION USING LOFTING TECHNIQUES
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described in the previous section required four points. In addition, the conic
shapes here are straight lines or ellipses, and therefore the least squares

curve fit to input coordinates, used in the previous section, is not needed here.
Otherwise, the computational algorithms are very similar. In order to establish
the required slopes for the first and last elliptical arcs in a cross section, the
first and last segments in each cross section must be straight lines.

1 -— +

ELLIPTICAL SEGMENT

POINTS 1 AND 2 Ancuum ARC SEGHENT

TANGENT AT BOTH
TANGENT TO STRAIGHT
LINE AT POINT 1 BUT
NOT TANGENT AT POINT 2

- if—

FIGURE 42 - REPLACEMENT OF CIRCULAR ARC WITH ELLIPTICAL SEGMENT

4.4 TRANSLATOR CODE

Geometry data decks set up in HABP format may be converted to the proper
format for input to the geometry code by utilizing a translator code. The trans-
lator is designed to process an HABP data deck with a minimum of additional input
by the user. However, two passes through the translator might be necessary to
ascertain the proper control points in the resultant cross-sectional planes. For
ease in checking the results, each resultant cross section has the same even
number of points; some points may be repeated.
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3 After reading user supplied titles and control variables, the first opera-
a | tion of the translator code reads the HABP data deck in its entirety, storing the
A i data for each major panel. Next, panels and data beyond a specified cut-off

station are eliminated. An example of a complete model is shown in Figure 43, for
the X-24C flat-bottom delta wing configuration. The same configuration cut off
just ahead of the fins, eliminating all protuberances but the canopy, is shown in
Figure 44. When subpanels are indicated, they are treated as major panels.

Values of the body stations from all the panels are then accumulated and arranged
in order, eliminating duplicate values. If some panels do not contain data at all
body stations within their length from start to end, such data is added by inter-
polating along longitudinal lines. This results in a series of panels, not
necessarily ordered and possibly overlapping longitudinally, with all body sta-
tions represented appropriately. The start and end of these panels are then

P accumulated and sorted and used to order the panels and to indicate limits of

?,“ additional panels made by dividing large panels at the additional starting sta-

1 tions whenever possible. The schematic model shown in Figure 45 illustrates this
procedure.

:_‘:Y_ it i ﬂ‘

FIGURE 43 - COMPLETE MODEL FOR X-24C FROM HABP FORMAT




STATION 418.6

FIGURE 44 - X-24C MODEL CUT OFF FOR PHASE 1

STATION 418.6 ?

\

FIGURE 45 - MODEL SCHEMATIC FOR TRANSLATOR CODE
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At this point in the procedure panels no longer overlap in the longitudinal
direction, but each longitudinal section may contain a different number of panels
arranged in the circumferential direction. The panels in any given section are
, not necessarily ordered at this point, but are so arranged in the next step.

; Common 1ines between circumferential panels are then eliminated from one of the
pairs, resulting in circumferentially complete single panels in the longitudinal
direction, each with possibly a different number of circumferential points. This
difference is adjusted by adding rows of points, where necessary, making the
points from two adjacent panels correspond at the common intersection. The nose
cap panel participates in the above step only to the extent that circumferential

A rows of points on the nose cap are adjusted to correspond to the points on the

;si next panel, rather than adjusting both panels. Then, by eliminating the duplicate
£ | cross section common to adjacent panels, the complete model merges into a single
B panel. See Figure 46. STATION 418.6

e e e e e e

FIGURE 46 - X-24C MODEL FROM TRANSLATOR CODE

Two files are prepared from the resultant procedure. One file contains the
data in a form suitable for input directly into the geometry program. The second
file contains the complete single panel model back in HABP format to be used in
verifying the procedure through either a visual examination of the file or a
computer aided plotting routine.
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SECTION V
OGIVE/CYLINDER CHECK CASE

A relatively simple body of revolution configuration was chosen as the first
demonstration case; an ogive-cylinder with a hemispherical nose cap. A sketch of
the model is shown in Figure 47. The ogive radius is 61.7 inches, the cylindri-
cal radius is 4.25 inches, and the nose radius is 0.1 inch. The vehicle length of
interest is 47.5 inches. The following section will discuss several aspects of
this configuration; specifically, geometry input by cross-section coordinates,
input pressure distribution, streamline generation at angle of attack, heating
rate distribution at angle of attack, and fin/plate interference heating.

0

Ru = 0,10 IN. ‘ 8.50 IN.

i
Rog * 61.68382 IN.

- <= - X

. 1 |
o 22.5 IN. 25.0 IN.——=

Y FIGURE 47 - OGIVE/CYLINDER MODEL

5.1 ARBITRARY GEOMETRY
It appears that definition of the geometry in the nose cap region affects the
heating results as printed out in the program. Differences in the heating rates

using geometric fits were discovered when compared with exact geometry results.
The print-out value is the ratio of local heating rate to the stagnation point
value and the geometric fits predict a stagnation value somewhat in error to that
from the exact geometry solution. However, the heating values downstream of the
stagnation point are in good agreement with the exact geometry results. To

show the effect of nose cap definition on the stagnation point radius of curvature
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3;1 : and heating rate for the hemisphere-ogive-cylinder check case, the number of s
stations defining the nose cap between the true nose point and the sphere-ogive
tangency point was varied. Results are presented in Figures 48 and 49 for the
stagnation point radius of curvature and heating rate, respectively. For this
model, at least, 7 or 8 stations are required to assure agreement with the exact ]
geometry solution. ;
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FIGURE 49 - EFFECT OF GEOMETRY FIT ON STAGNATION HEATING

/ i 5.2 INPUT CONDITIONS

= Freestream input conditions for wind tunnel tests for which data are avail-

L able are tabulated below.

y P, = 24.336 psf

L T_ = 102.75°R

f | U_ = 2956 fps

< M, = 5.95

_ Assume a wall temperature of 550°R. Transition onset at angle of attack is

L assumed at an X distance of 1.5 inch; fully developed turbulent flow at 1.8 4

3 ' i
inch. ‘
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5.2.1 Input Pressure Data

One of the present analysis cases was carried out by using the input pressure
distribution option. Pressure data at angles of attack of 0°, 4°, 8°, and 12°
were received from AFFDL. This data was generated with the NSWC inviscid flow
field code (Reference 31) and closely matches test data. Nose cap pressure data
at zero angle of attack is presented in Figure 50. Polar plots at two stations
(on the nose cap and on the cylindrical section) for 12 degrees angle of attack
are presented in Figures 51 and 52. The data at each station are normalized by
the value on the windward stagnation line (¢ = 0°) at that station.
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FIGURE 50 - SPHERICAL NOSE CAP PRESSURES




PRESSURE DISTRIBUTION FROM
FIT OF DATA FROM NSWC
PROGRAM (REFERENCE 31)
M, = 5.95

Py = 24.336 PSF

a = 12°

RN = 0.10 IN.

PCL/pS = 0.32458

Ps = 1120.2 PSF

FIGURE 51 - PRESSURES ON OGIVE/CYLINDER (X=0.0699 INCH)
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FIGURE 52 - PRESSURES ON OGIVE/CYLINDER (X=39.6634 INCH)
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5.2.2 Options and Other Input Data

) The options chosen for this demonstration case are listed in Appendix E of
Volume II on sample output, which reproduces the first pages of the computer
output. Also shown are the derived initialized stagnation conditions, normal
shock properties, and shock stand-off parameters.

5.3 STREAMLINE GENERATION

Streamlines were generated at two angles of attack, 8 degrees and 12 degrees,
and for two different pressure options for 12 degrees angle of attack, input
pressures and modified Newtonian. The 8 degrees angle-of-attack case used the
modified Newtonian pressure option. The streamlines have been superimposed on a
representation of the model and are shown in Figures 53 through 58, in both a side
view and a front view. The front views are looking at the vehicle at zero angle
of attack. Using the input pressures for 12 degrees angle of attack, it is seen
that g > 2° streamlines wrap completely around the vehicle. The g = 2° streamline
using the modified Newtonian pressure wraps around to ¢ = 90° at the aft end.
Using the modified Newtonian pressure at 8 degrees angle of attack, the g = 6°

streamline wraps around to ¢ = 90° at the aft end.

PRESSURE DISTRIBUTION FROM FIT
OF DATA FROM HSWC PROGRAM
(REFERENCE 31)

M =5.95
P_ = 24.336 PSF
a = 12°

4
% %t
=

<3

z =

X
fMN€§.

Y

FIGURE 53 ~ STREAMLINES ON OGIVE/CYLIMLER, 12° ANGLE OF ATTACK,
INPUT PRESSURES - (FRONT VIEW)
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FIGURE 55 - STREAMLINES ON OGIVE/CYLINDER, 8° ANGLE OF ATTACK,
f NEWTGNIAN PRESSURE - (FRONT VIEW)
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MODIFIED NEWTONIAM PRESSURE DISTRIBUTION
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FIGURE 56 - STREAMLINES ON OGIVE/CYLINDER, 8° ANGLE OF ATTACK,
NEWTONIAN PRESSURE - (SIDE VIEW)
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FIGURE 57 - STREAMLINES ON OGIVE/CYLINDER, 12° ANGLE OF ATTACK,
NEWTONIAN PRESSURE ~ (FRONT VIEW)
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MOOIFIED NEWTONIAN PRESSURE DISTRIBUTION
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FIGURE 58 - STREAMLINES ON OGIVE/CYLINDER, 12° ANGLE OF ATTACK,
NEWTONIAN PRESSURE - (SIDE VIEW)

5.4 HEATING RATE DISTRIBUTION

The axial heating rate along the windward centerline is presented in Figure
59, comparing the two angles of attack using modified Newtonian pressures. As
was expected, the heating rate is higher at the greater angle of attack. Spanwise
heating rate distributions are presented in Figures 60 through 65. Distribution
at 3 body stations for the input pressure case are presented in Figure 60. The
angle PHI is measured from the windward stagnation line. The remaining figures
present a comparison of the spanwise heating distribution at two angles of attack
for 5 body stations, all based on the modified Newtonian pressure distribution.

WP

(HEATING RATES BASED ON MODIFIED NEWTONIAN PRESSURE DISTRIBUTION)
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e M= 5.95
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FIGURE 59 - OGIVE/CYLINDER CENTERLINE HEATING RATE
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FIGURE 62 - SPANWISE HEATING RATE ON OGIVE/CYLINDER, X = 20 INCH

y— . -

k

k \ , P 24,336 PSF
1 M= 5.95
¢
!
|

Qg = 18.94 BTU/FT2-SEC
{TURBULENT FLow

0.4
)

i\

o

Qy/0ys¥10”
0.3
»
[ J
®

- ‘__._L_,____ - e
[ 4

. e [ ] Aa= g°
Da= 2
: 2 -
® oile o aa |ae o
| S 2 0 120 140 160

00 100
& - DEGREES

FIGURE 63 - SPANWISE HEATING RATE ON OGIVE/CYLINDER, X = 30 INCH




4 / T
L 3
F., | @  (HEATING RATES BASED ON MODIFIED NEWTONIAN PRESSURE DISTRIBUTION) l ;
] ° P = 24,336 PSF :
b M= 5.95
N " Oy = 18.94 BTU/FT2-SECk
1 o TURBULENT FLOW
" [ X T
- -~ - (] a
o © o
A -
E ><m o
; & |
3 - )
f’"‘ -2 a [
- § a ° Aa= 8°
[ 3
] R o Oa = 12°
23 ~N P a_
) o s
o ] P o R - k PP
, Pe
= % 20 P 60 00 100 120 140 160 "
» & - DEGREES
~ i
f
FIGURE 64 - SPANWISE HEATING RATE OF OGIVE/CYLINDER, X = 40 INCH j
w  (HEATING RATES BASED ON MODIFIED NEWTONIAN PRESSURE DISTRIBUTION)
o M AR N -
= r_- 24,336 PSF
' M= 5,95
[ X ) © .
3 Qus = 18.94 BTU/FT2-SEC
° TURBULENT FLOW
e —
[ ] .
! in ] '
I g OAT N !
\ ’3 Py Aas §
}~ L] I Oa = |2°
e [ 3
N .. ® ° i ao p
® o & h
- [ ] ;
o ° 4
[ J
' (-]
| % 2 < 0 00 100 120 19 160
é - DEGREES

!
; FIGURE 65 - SPANWISE HEATING RATE ON OGIVE/CYLINDER, X = 47.5 INCH

i 73




5.5 FIN/PLATE INTERACTION

Calculations were performed to obtain the heating rate distribution resulting
from fin/plate interaction. A fin was placed at the aft end of the vehicle with
the leading edge on the 90° meridian, measured from the windward stagnation line.
The fin was arbitrarily made 10 inches long with the side of the fin oriented 10°
from the longitudinal axis. As was mentioned above, the g = 6° streamline at 8
degrees angle of attach approaches the 90° meridian at the end of the vehicle,
while the g = 2° streamline intersects the 90° meridian for 12 degrees angle of
attack. Information on these two streamlines at the end of the vehicle provide
the free stream conditions input to the fin calculations. The following table

summarizes the input parameters.

a |8 [beaz.50n) | OFIN My | QO FIN SHOCK WAVE ANGLE
8°| 6° 91.4° 20.3° 5.19 | 0.0155 29.8°
12°] 2° 90.4° 25.4° 4.98 | 0.0161 36.3°

Fin/plate interaction results are presented in Figures 66 through 70. The ratio
of local surface heating rate to the undisturbed value at the fin leading edge is
shown for both angles of attack at each of several locations along the fin. The
peak appears to be more sharply defined for the 8 degree angle of attack case, but
the peak value for the 12 degree angle of attack case is 20 to 25 percent greater
than for 8 degrees angle of attack.
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SECTION VI
FLAT BOTTOM DELTA WING CHECK CASE

The second demonstration check case is the flat bottom, delta wing X-24C
configuration. Of specific interest are the leading edge and the flat bottom
portion of the vehicle. A sketch of the model was presented in Section 4.0 and is
repeated here as Figure 71. The nose cap diameter and the leading edge diameter
are both 8.0 inches. The sweep angle is 77.55 degrees and the leading edge starts
at station 2.73. The flat bottom is inclined 3.27 degrees to the free stream at
zero angle of attack. The vehicle length of interest is 418.6 inches. Geometry
input by cross section coordinates, input conditions, streamline generation at

angle of attack, and heat transfer results will be discussed in the following
sections.

FIGURE 71 - X-24C MODEL FOR DELTA WING CHECK CASE
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6.1 ARBITRARY GEOMETRY

Results of specifying the geometry from cross section coordinate data,
originally in HABP format, are shown in Figure 72. The model was generated from
the geometric coefficients determined in the auxiliary geometry codes.

S FIGURE 72 - X-24C MODEL FROM GEOMETRY COEFFICIENTS

6.2 INPUT CONDITIONS
Freestream input conditions for wind tunnel tests for which data are avail-

able are listed below.

5 4 P_ = 22.71 pst

; T_ = 104.0°R
U_ = 2993 fps
M = 5.99

The wall temperature is assumed to be 535°R. At angle of attack, transition
onset is assumed to be at 1.0 inch; fully developed turbulent flow at 1.2 inch.

! The boundary layer edge conditions were generated assuming a variable entropy

: inviscid flow field for a perfect gas, although some cases were generated using a
normal shock entropy.
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6.3 STREAMLINE GENERATION

in the table below.

Streamlines were generated for two angles of attack; 4 degrees and 12 degrees.
. ‘ The input parameters describing the flat bottom pressure distribution are listed

@ Qu Yo {Pe PR/ (Po - Pouoyiper!
4 | 0.876 | 5.0 0.01
12 | 1.000 | 0.0 0.01

Typical streamlines are shown for both cases in Figures 73 through 76, super-
imposed on a representation of the model. Figures 73 and 75 show the streamlines
.. as viewed from the bottom and Figures 74 and 76 are front views, looking at

é ] the vehicle at zero angle of attack.

] At an angle of attack of 4 degrees, the
g g = 32.8° streamline wraps around the leading edge. The 8 = 10° streamline at an
};% angle of attack of 12 degrees wraps around the leading edge.
X = 418.6 IN.

X = 109.5 IN,

FIGURE 73 - STREAMLINES ON X-24C, 4° ANGLE OF ATTACK - (BOTTOM VIEW)
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FIGURE 74 - STREAMLINES ON X-24C, 4° ANGLE OF ATTACK - (FRONT VIEW)

X = 109.5 IN.

P~ 22.71 PSF

FIGURE 75 - STREAMLINES ON X-24C, 12° ANGLE OF ATTACK - (BOTTOM VIEW)
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=5.9 ‘ = 10°*
P = 22.71 PSF

?:g FIGURE 76 - STREAMLINES ON X-24C, 12° ANGLE OF ATTACK - (FRONT VIEW)

6.4 HEATING RATE DISTRIBUTION

The use of variable entropy in determmining boundary layer edge conditions
is compared to the use of normal shock sntropy in Figures 77 and 78. The axial
heating rate along the windward centerline at an angle of attack of 4 degrees is
presented in Figure 77. The heating rate along the g = 2° streamline for the same
angle of attack is presented in Figure 78. It may be seen from both figures that
: i variable entropy predicts a higher heating rate than does normal shock entropy.
The axial heating rate for the two angles of attack are compared in Figures 79 and ,
80. Figure 79 compares the heating rates along the windward centerline and Figure .l

80 compares the heating rates along the g = 2° streamline. The results shown in

o Figures 79 and 80 are for variable entropy. Spanwise heating rate distributions
on the flat bottom at three body stations for the two angles of attack are shown
in Figures 81 and 82. Body stations chosen are X=200 inches, X=300 inches, and
X=419 inches. The same information is also presented in Figures 83 through 85.
Here, the two angles of attack are compared at each of the body stations.
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SECTION VII
SLAB DELTA CHECK CASE

The third demonstration check case is the slab delta model used by Bertram
and Everhart in Reference 18. The slab thickness is 0.75 inches and the leading
edge sweep is 70 degrees. The vehicle length of interest is 4.53 inches. The
geometry in the calculations was generated with the exact analytical slab delta
routine. Input conditions, stream line generation at angle of attack, and heat
transfer results will be discussed in the following section. Heat transfer
results inciude heating to a flap located at the end of the vehicle.

7.1 INPUT CONDITIONS
Freestream input parameters for two conditions are listed below

M_ 6.8 9.6
P - psf | 18.42 2.94
T_-°R | 108.31 85.43
u_ - fps | 3468 4348
Re_ 2.4 x 10° 7.9 x 10°

The wall temperature is assumed to be 570°R. At angle of attack, transition onset
is assumed to be 0.01 inch; fully developed turbulent flow at 0.012 inch. The
boundary layer edge conditions were generated with a variable entropy inviscid
flow field for a perfect gas.

7.2 STREAMLINE GENERATION

Streamlines for M_ = 6.8 were generated for two angles of attack; 5.5 degrees
and 10 degrees, and streamlines for M_ = 9.6 were generated at 5.2 degrees angle
of attack. The input parameters describing the flat bottom pressure distribution

are listed in the table below.




_1
3 M, | @ O Xe | (P = Pe)/(Pey = Poyounper)
6.8 | 5.5° | 0.798 | 5.35 0.01
10.0° | 1.000 | 0.0 0.01
9.6 | 5.2 0.892 | 4.2 0.01

Typical streamlines on the bottom delta surface are shown in Figures 86, 87, and

351 88. At M_ = 6.8 and an angle of attack of 5.5 degrees, the g8 > 70° streamlines
{l wrap around the leading edge. At an angle of attack of 10 degrees and M_ = 6.8,
2 the 8 = 50° streamline is still on the bottom surface. The g = 20° streamline is

still on the bottom surface for the M_ = 9.6 and 5.2° angle of attack condition.

.
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FIGURE 86 - STREAMLINES ON SLAB DELTA, 5.5° ANGLE OF ATTACK, M = 6.8
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FIGURE 87 - STREAMLINES ON SLAB DELTA, 10° ANGLE OF ATTACK, M = 6.8
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FIGURE 88 - STREAMLINES ON SLAB DELTA, 5.2° ANGLE OF ATTACK, M = 9.6
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7.3 HEATING RATE DISTRIBUTION

Axial heating rates along the windward centerline are presented in Figures
89, 90, and 91. Laminar and turbulent heating rates for 5.5 degrees angle of
attack are compared in Figure 89. A comparison of the laminar heating rates for
the two angles of attack at M_ = 6.8 is made in Figure 90. The results for M =
9.6 are added, and are presented in Figure 91. Spanwise laminar and turbulent
heating rates for 5.5 degrees angle of attack at several body stations are
compared in Figures 92 through 96.
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FIGURE 89 - SLAB DELTA WINDWARD CENTERLINE HEATING,
5.5 ANGLE OF ATTACK, M = 6.8
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4
3 s
Ay o Y Y
{ & T
B g . lo _Lanjuan
? - o A .
H (-] r
o "QM§ = 19.37 BTU/FT?-sEC
v o =
g
.
S
e
k!
e [ J
y 8 -—
8
% . ° 12 1 2 24 2 32
& - DEGREES

FIGURE 92 - SLAB DELTA SPANWISE HEATING, 5.5° ANGLE OF ATTACK,
M=6.8, X =1.0 INCH

L | X — :
. x
, o~ AMINAR 3
° E.
21 i N
54 o .
| s ~
8 "
f | 8 Qs 19.37BTU/FT!-SE
? ] ?
.;~ 8 :
_ i - |
4 o . ‘.
) b4 ° 4 ols ,
2 a ) s 10 15 20 >3 2 3 o
. - DEGREES i

FIGURE 93 - SLAB DELTA SPANWISE HEATING, 5.5° ANGLE OF ATTACK, j
M=6.8, X =2.0 INCH {




R e 1,

.

‘:’:‘

. ‘."

o
° 2 L 4
& v |
] NAR
D{b R
& - . .
8
§ [-]
>
g +— fays = 19.37 BTU/FT-SEC
[ ]
3 ® |
e —“‘Q:
8
b 7] 20 2 0 S0 (] 0
¢ - DEGREES

FIGURE 94 - SLAB DELTA SPANWISE HEATING, 5.5° ANGLE OF ATTACK,

M=6.8, X = 3.0 INCH

b
e . -
ry
o AMINAR
S
1
4
e — T
>
8 Qs = 19.37 BTW/FT®-sEC
[ -]
S
L ®
%
8
1 10 20 0 0 L] (] 0
¢ - DEGREES

FIGURE 95 - SLAB DELTA SPANWISE HEATING, 5.5° ANGLE OF ATTACK,
M = 6.8) x = 4-0 INCH




. |
é . |
a
° s
8 * . N
g )
g s = 1937 BTU/FT2-SEC
iy 87 o .
8 r °
E- q 4
< N * Yo _ oeaees ¥ © " ®

{,J FIGURE 96 - SLAB DELTA SPANWISE HEATING, 5.5° ANGLE OF ATTACK,
' M=26.8, X=4.53 INCH

F 7.4 FLAP HEATING o
’ The spanwise distribution of peak heating rate at reattachment to a flap

located at the aft end of the lower surface of the basic slab delta model was

calculated for two conditions; 10 degrees angle of attack at M_ = 6.8 and 5.2 |
degrees angle of attack at M_ = 9.6. The variation of the enthalpy heat
transfer coefficient, h/CP, with flap angle at several spanwise locations is
shown in Figures 97 and 98. (The enthalpy heat transfer coefficient is used

k ; with enthalpy difference rather than with the temperature difference, and is

} d ; presented here as the temperature heat transfer coefficient divided by specific
' heat.) Incipient separation for the M_ = 6.8 case occurs at a flap angle of
approximately 2.5°, and the flap angle can be increased to about 32° before the ]




local Mach number goes subsonic, which is the limit of the current calculation
procedure. For the M_ = 9.6 case, incipient separation occurs at a flap angle

of approximately 5°, and the flap angle can be increased to about 40°. The heat
transfer coefficient spanwise distribution at three flap angles is compared for
the two Mach numbers in Figures 99, 100 and 101. Flap heating for M_ = 6.8,
which represents a higher Reynolds number, is greater than for M_ = 9.6, and
shows a spanwise peak. An additional comparison at several flap angles for each
Mach number is made in Figures 102 and 103.
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A similar treatment of the nondimensional local Stanton number at the .
3 reattachment point is presented in Figures 104 through 110. The trends in Stanton |
i_"' number are somewhat different from those for the heat transfer coefficient, :
however. The Stanton number shows a peak with flap angle. At the same flap
angle, the lower Reynolds number (M_ = 9.6) results in higher Stanton numbers,
although a spanwise peak still occurs with the higher Reynolds number (M. = 6.8).
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APPENDIX A
TWO-STREAMLINE SCALE FACTOR EQUATION

The following two equations relating geometric parameters used in the scale
factor analysis are presented on pages 23 and 24 of Reference 5.

A A A
dx = € €, h,Jf+ ?,-txhd/s (A-1)
A
’J¢-¢5‘2¢hsdf+ %-eéhd;d (A-2)
From Equations (39), (40) and (62) of Reference 5 it can be shown that

A
‘e, - cos @ cos/”

- 516 Cos 5,, - Co56 S 6‘# s l”

> O

= -5 6 cos/” (A-3)

0]
> xn) ‘>

RN

= 056 CoF S; + SO S 5’4 sl

o
AN

sSin O coz 6} - Cos @ sin S, sin]7 = f Kid
d3

Equation (A-2) can be solved for hsdf.

hedp = (fd,s—g‘,.’c‘,.,hal,)/(z,.g#) (a-4) |
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This result may be substituted into Equation (A-1) to give

A A
dx = 25 °x (ﬁd¢—§,-2¢ha;s)+?p-2xhd/g (A-5)

8, -2,

|

3

i If this expression is divided by dB and solved for h, we find that
|

s

-

5 dx es- ¢
T— ; .c L gé
b = r\"% 7 (A-6)
x N N\
3 A A e 2 A A
4 @ — [ =2 _=X_ .
P 8% ) P°C
| |
j} } By incorporating the results of Equation (A-3) it can be shown that ; '
| |
42 _ [dx\[d¢ £ |
- - L2 |
b cos @ a/’a 73 é” cos/” m (A-7) ; »

. It is this expression that is used to calculate the scale factor in the computer
i program.
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